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Abstract. Changes in the size and shape of a continuous body can be described by metrical tools.
The change in size is experimentally associated with relative elongation, the change of shape
with the (local) angle change. Within the body, the concept of size (line length) and angle (angle
between two lines) is based on the scalar product; the metric tensor is also needed to describe
these relationships. When determining the relationship between size and size change as well as
angle and angle change, it should be taken into account that, although both length and angle are
interpreted by scalar product of metric tensor components, but in the context of relative length
change there are fractional functions of radical expressions, in the context of angular change,
there are fractional functions of radical expressions and partly inverse angle functions. The tensor
cannot be formed directly from these two functions, but only by series expansion, and then there
is a limit to the theoretical and numerical application of the introduced strain tensor: that the
whole function can be approached well with the first few members of series expansion. This
allows only a small strain (small relative elongation) to be described. This limit and the limitation
of the use of topological tools (that is, the significant change of size and shape is not a
deformation but a rearrangement) are consistent with each with other.

1. Introduction
Generally, the symmetrical linear expression constructed from the gradient of the displacement vector

of the body is used for the local description of continuous media, &, = (Vu+(Vu)" /2, or an expression

including first degree and quadratic elements, €, =(Vu+(Vu) +Vu(Vu)")/2. Generally, the &

expression is associated with small strain, while the ey, expression is associated with large strain. It is
known from the literature [1,2], that nonlinear relationships are necessary in case of movement without
strain for the strains to “disappear”. According to this, it is not the linear but the nonlinear expressions
that belong not even the small, but rather to the zero strains. Based on the principle of continuity - the
expression suitable for describing small strains is closer to zero than the expression describing large
strain - this is incomprehensible.

It is also known from the literature (see, for example, the above references) that the relationships
explained above from the metric tensor to describe the physical strains are not given “automatically”,
but can be interpreted mathematically in relation to relative elongations and relative angular changes
such that the root function and the angle function are associated with the first one or two elements of its
power series. This assumes that the absolute value of the expressions tested is small (negligible to
compare with 1 (one)).



These examinations are fundamentally based on previous research [3,4,5].
2. Differential geometric description of the continuous medium

2.1. Differential geometric background

On the geometric background see e.g. [6,7], and [8]; theory of elasticity [9], and [10,2]. In this
subsection, the overview is based on results from literature; our aim is to list relationships to support
further arguments. In addition to the list, we also focus on presenting step by step how each geometric
concept is built upon each other.

The coordinate system {g'} should be given in space.

Mark the position vector before the deformation with r, and R after the deformation. The following
relationships are written only for the state before the deformation. They apply to analog relationships
following the change in strain.

First we look at the quantities describing the geometry.
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The absolute differentials (presented for one contravariant component): V J.a = ar + FLjak.

Parallel displacement and the difference resulting from interchanging absolute differentials can be
described with the curvature tensor.

2.2. Relationships among the geometric objects before and after deformation
See relationships in general e.g. [9,10,2].
The difference of position vectors is the displacement vector: U=R —r,
The difference of metric tensors in the measure tensor of strain: y = G — g ; different measure tensors
of strain are usually interpreted, generally half of those given here. We will come back to this later.
The change of affine connexion coefficient: iuk = Fikj —P!} . Generally, no geometric content is asso-

ciated with it. In case of small strains and small displacements, this change is negligible, in case of small
strains and large displacements cannot be neglected (see e.g. [4,5]).



Change of curvature tensor: p = R —r , that is p' = R' e r' i 5 give the compatibility equations (if

it is made to equal zero).
To construct the theory, it is necessary to express the change of different geometric objects with the
gradient tensor of the displacement vector. Here, we only give the relationship for one geometric object,

the measure tensor of strain: ¥ =Vu+(Vu)" +(Vu)(Vu)". We do not use the other relationships in this
study, for relationships see [3,4,5].

3. Relationship of displacement and rotation during the strain of continuous medium
The change of continuous medium due to external effect is hereinafter referred to as mapping. The
mapping of the continuous medium locally is usually split into the “product” of rotation and strain with
polar division (see e.g. [11,12,13], or [9,10,]).

The mapping of a continuous medium is given with the displacement vector: u=R —r. The
displacement vector is the kinematic variable of the continuous medium.
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Figure 1. Rotation of a direction vector and the neighbourhood of a point:
dR’ = Q.dr; dR” = (VR)*dr

The tensor Q obtained by polar division (VR = ©.4) of gradient tensor VR of mapping u gives the
rotation of the neighborhood of the point, dR’ = Q dr (see figure 1).

The gradient tensor VR of mapping u gives the rotation of a direction vector marked with dr of
position vector r, and the same time the change in its length: dR"” = (VR)*dr (see figure 1).

Based on the above, the following conclusions can be made. In the continuous medium we can
interpret two rotations. One is the rotation of the direction, and the rotation of the neighborhood of a
point. Both depend on the kinematic variable of the continuous medium, the displacement vector u.

The individual decomposition can be expressed by the gradient tensor of the displacement vector u.

In the linear case, for this reason, the subscript L is used, we get the following terms:

(VR) =g+(Vr)'=4,Q =Q o4 =g+g,_+0, 1)

where
A =0+g, )
Q =g+o, (©)

g = l(Vu +(Vu)?),
2 4)

o, =2 ((Vu)’' —Vu).
2 )



In the linear case, both the right and left rotation tensors (€2.) as well as the right and left tensors
connected with the strain (4.) coincide; the €, and 4. quantities can be interchanged with error
negligible to compare with 1 (one).

Note. 1t is known from linear algebra that ®, =(Vu)" —Vu)/2 tensor quantity does not describe

rotation but interprets vector product; the expression , =g+ o, itself rotates, if «, is small compare
with g [7,14].

In the quadratic case, for this reason, the subscript KV is used, as well as subscript “le”” refers to the
left, subscript “ri” refers to the right decomposition, we get the following terms:

(VR) = Ay ©Qyy = RQyy © Aoy =8 +(VI), (6)

where

Ay =0 +%(Vu +(Vu)’) —%((Vu)(w) + (V) (Vu)) —%(Vu)(w)* " g(w)*w, @)
Ay =9+ 5 (VU + (V)) -2 (VU)(V) + (Vu) (Vu)) + g(w)(w)* LUV, ®)

Q. —g+ %((Vu)* _Vu)+ g(Vu)(Vu) - %(Vu)* (Vu)") —%(Vu)(Vu)* —é(Vu)*Vu. ©)

The left and right decompositions do not match. The fact that the tensors connected with deforma-
tions in the left and right decomposition are not the same raises the possibility that nature chooses
between the left and right decompositions: among the two possibilities of deformation, experimental
results should be distinguished. The author is not aware of any theoretical foundations and experimental
results. The components of the strain tensor will be determined using components of metrical tensors
(in deformed and non-deformed states), so there is no need to use the tensors A4, ., A« » See Section

4.
4. Interpretation of strain in a continuous medium

4.1. Experimental interpretation of strain
The strain was derived from experimental experience. Two types of strain are usually distinguished [ 13]:
specific length change, independent of the length of the prismatic rod (specimen), and the specific
rotation of each cross-section of the circular cylinder (specimen) independent of the length of the
specimen.

The length of the prismatic specimen is marked with /, while the elongated (or shortened) length is
marked with L. The relative elongation is interpreted with the relationship &, = (L —1) /1 ; (see figure 2).

The thus interpreted specific elongation locally describes the strain of the body. This strain is also called
linear strain. The linear strain can also be interpreted by comparing the elongation of the specimen with

the length of the elongated (shortened) length, & = (L —1)/ L, rather than the length of the specimen. It

can be shown that as long as with the &, is negligible to compare with 1 (one), then the two interpretations
equal with errors negligible to compare with 1 (one). It also means that the above interpretation of linear
strain has a limit: the linear strains cannot be large. This does not significantly affect the interpretation
of strain, since the large-scale change of shape is not a strain but a rearrangement [15].

The length of the cylindrical specimen is marked with /, its radius with , the rotation of two end
cross-sections compared to each other, marked with @, the relative angular change is interpreted with
the relationship: &, =(r@) /| (see figure 2). The thus interpreted specific angular change locally

describes the strain of the body. This strain is also called for change. The angle change strain can also



be interpreted as comparing the angle change of the specimen with the length of the elongated
(shortened) length or the length of the twisted line, &, =(r@)/ L. It can be shown that as long as with

¢, 1s negligible to compare with 1 (one), then the two interpretations equal each to other with errors

negligible to compare with 1 (one). It also means that the above interpretation of form change has a
limit: the angular changes cannot be large. Regarding this, see the note made at the linear strain.
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Figure 2 Experimental interpretation of strain: relative elongation and angle change

4.2. Mathematical interpretation of strain

The experimental interpretation of strain refers to a homogeneous strain state. This is not a general strain
state. Therefore, in the case of arbitrary strain, it is not possible to characterize the strain of the body by
the relative elongation of a particular selected curve. Analyzing the specific elongation of the specimen,
we interpret the relative elongation of a (regular) arc (curve section) within a body: & = (L —1)/1, where

[ is the length of the selected (regular) arc before the deformation, and L marks the length following the
deformation. Then the strain of a body can be interpreted: the strain of the body is the set of the relative
elongation of all regular arces (curve sections) in the volume of the examined body.

The strain is based on the relative elongation of the curve sections and does not formally say anything
about the change of angle closed by the curves. In terms of a triangle, the relationship between elongation
and angular change can be interpreted.
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Figure 3 For the interpretation of the relationship between angular change and elongation

Consider the triangles shown in figure 3. The line segments a and b can lock different angles.
Changes in angles are characterized by relative elongation applying to different lengths /. If the relative
elongation of line segments a and b is negligible, i.e. negligible to compare with 1 (one), then the angle
change is characterized by the relative elongation of the length / of the section stretched by the two line
segments with errors negligible to compare with 1 (one).

4.3. Small and large strain
The interpretation of strain allows the strains to be grouped according to the scale of the strains.
The strain of a body is small if the relative elongation of any (regular) arc connecting any two points
of the body within the body is sufficiently small, i.e. less than a negligible to compare with 1 (one) value.
The strain of a body is great if there is at least one regular arc that connects any two points of the
body within the body with a relatively not small elongation.



5. Expressing strain with the change of the metric tensor

The strains described above characterize the strain of the body globally (in the integral form). For local
characterization, arbitrary regular arcs should be located at every point of the body, with three fixed-
length regular arcs — the base vectors as infinitely short arcs. In this case, it should be pointed out that
the relative elongation in the three directions and relative angular changes of the three directions in one
point already determine the relative elongation of the basic vector in any direction at the same point, and
the relative angular change between any two basic vectors at the same point. If the relative elongations
and relative angular change constitute a tensor quantity, they clearly determinate these strains.

5.1. Geometric content of metric tensor elements

The elements of the metric tensor are partly related to the relative elongation of the base vectors and
partly to the angle between the base vectors (see e.g. [9,10,2]). Relative elongation of the base vectors
can be expressed with the help of the main diagonal elements (there is no summary here and later

according to the repeated indices)
JGi —+/9;
1 gll , (10)

and its angular change
My =0ty — Ay, (11)

where

0jj G;
CoSq; =————= and COoSA = ——. (12)
: \,giigjj J Giiij

Note that indexing applying to the # quantity suggests that we are dealing with a secondary rank
tensor; if it is true, it would have to prove it. The terms (10-12) above show that the nine #; amounts do
not form a tensor.

5.2. Expressing small strain with metric tensor change
The explication below is based on our previous results [3,4,5].

Relationships (10-12) do not only mean that the nine #; quantities do not form a tensor, but it can
also be seen that the #;; quantities depend on components of the measure tensor of strain y=G —-g ina

complex way.
Let’s transform the (10) relationship!

7 =—\/G_\/l/g_= 1+§—1. (13)
gii i

We can have two assumptions. The first assumption is that the relative elongations, i.¢., 77;; quantities,
are considered to be small, that is negligible to compare with 1 (one). Then the square root expression
can be expressed in a series and in it it is enough to keep some elements. At the same time, this also
means that the main diagonal elements of the measure tensor of strain, y;;, are negligible in relation to
the main diagonal elements of the metric tensor of the undeformed state, gii. The second assumption is
to express the square root expression in a series, and some first elements approximate the square root
with sufficient accuracy. This means, on the one hand, that the main diagonal elements of the measure
tensor of strain, y;;, are negligible in relation to the main diagonal elements of the metric tensor of the
undeformed position, gi;, on the other hand, that the #; quantities are small and negligible to compare
with 1 (one). The two assumptions are equivalent.



By series expansion of the radical expression and retained by the two elements (13) it can formulate
as follows:

2
7. = 1420 1~ i 1y _ i 1_1& _ (14)
! ;i 29; 2\ 29; 29; 4g;

Since the condition of series expansion is that the quotient of y;/g; in other words, the relative
elongation at 1 (one) is negligible, the relative elongation in the case of small relative elongations can
be therefore described with the expression

- _ i zl Yii _ 15
i 29n[ > g“\/g»“J (15)

For the “explication” of the expression (11), consider the A; =a; —@; expression, where g; marks

the angular change of the /™ and the /™ base vectors. Then the following relationship can be described:
cos A; = cos(a; — ¢ ) = Cosay Cosg; +sinay sing. (16)

The relationship means that the correlation in the case of a rectangular coordinate system is greatly
simplified.

The case of orthogonal coordinates

The relationship (16) is simplified to the relationship

cos A; =sing;. a7
From this, the function of the angle change ¢; can be expressed as a first two member of polynomial

series if the angle change itself is negligible at 90°, i.e. if the relative (and thus the absolute) angle change
is small. You can then write instead (17):

PN (18)
@, =COSA = .

’ J GG

Using repeatedly that the main diagonal elements of the measure tensor, y;;, are negligible to compare
with main diagonal elements of the metric tensor of the undeformed state, g;.,, in the case of orthogonal

coordinates, for the change of the angles of the base vectors we obtain the expression:
7” . .
Qi = ' (I * J)
' J9i9;

Except for coefficient !4, this term is the same as that of the small relative elongation below (15).

The case of oblique coordinates

Assuming in expression (16), that the ¢; function of the angle change is negligible to compare with
90°, and applying the series expansion for the cos and sin angle functions up to the quadratic elements

(19)

(cosg; El—(oif /2 and sing; = ¢, ) the (16) expression can be transformed into a quadratic function

the roots of which:

cose; COS A —COSq;;
@, =190, [11\/1—2 > A‘_ % J (i#]) (20)
sing; sing;

Small angle change only results in a solution with a negative sign. We apply series expansion again, and
the elements of the series expansion, up to the quadratic elements, give the following expression to
describe the angle change:



(21)

2
COSA, —COSc; 1 COSc;; | COS A, —COSc; L.
gy = A o0 1000 [ 0O0R ZCO0 | iy p,
sing; 2 sing; sing;;
(To retain cubic or higher power elements, the term (20) cannot be used.)
To examine the term (21), first consider the second members. The member in front of the parentheses
in the near-right coordinate system gives a value close to zero, and if the first member is negligible to

compare with 1 (one), then the second member is negligible to compare with the first member.
Therefore, the angle change can be expressed in an oblique coordinate system as:

0j;

G,
:cosAij—COSaij:\/G_“\/GTj Joi 9,

g = =0 KA 22)
Sin Olij g:
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Using again the main diagonal elements of the measure tensor of strain, y;, are negligible to compare
with the metric tensor elements of the undeformed state, g;;, in (22) we get:

Yij ..
@y =—F———, (#])
J V99 _gi?

In an oblique coordinate system, the relationship (23) only equals with the (19) relationship with
errors negligible to compare with 1 (one), if the coordinate system is close to orthogonal one, i.e. the
base vectors close an angle between 85 to 95 degrees.

In the case of small strains, i.e. small relative elongations and small relative angular changes, and in
a slightly oblique coordinate system, we found a relationship between the specific elongation, the
specific angular change and the measure tensor of strain:

(23)

Vii

e e (24)
2.9\ G
i =@ = fi = (i=])) (25)
\Igiigjj - gij
In accordance with this, the tensor of small strains can be introduced.
We call to the tensor of small strains the tensor interpreted with physical components:
- Yij
i =TT/ — (26)
2«/ gij \/ gij
The covariant components of small strains in the base {R;} in the deformed state are:
Yij
g = ?’ (27)

5.3. Conditions of introducing the tensor of strain and its consequences

We introduced the tensor of strain in such a way, that the tensor of strain let have a direct physical
meaning: the main diagonal elements of strain tensor give the relative elongation of the tangent vectors
of the coordinate lines, and the side diagonal elements of strain tensor gives the change of the angles
between the coordinate lines (see e.g. [2]).



The conditions for introducing the strain tensor are as follows: relative elongation and relative
angular changes are small; the coordinate system used to describe the problem is orthogonal at least
nearly orthogonal.

The consequences of introducing the strain tensor can be summarized as follows. The deformations
can only be small. During the derivation of formula, the small magnitude of relative elongation and
relative angular change were used several times from the radical and trigonometric expressions. For this
reason, it is difficult to assume that other strain tensors of large deformation could be derived by using
a metric tensor-based expression of relative elongation and relative angular change from the above
relationships. In pragmatic terms: there is one strain tensor and it only applies to small strains; tensor
of large strains cannot be derived. This is not in contradiction with the physically experienced
phenomena: the phenomenon considered to be a large strain is not deformation, but a rearrangement,
for which the concept of the coordinate line cannot be interpreted, since the rearrangement of the
particles excludes the topological order from being preserved [15]. The strain tensor is symmetrical.
The side diagonal elements define the relative angle change between two vectors. Since the definition
of the angle from one vector to the other or the angle from the second to the first is always the same, an
asymmetric metric tensor cannot be formed. For the interpretation of an asymmetric metric tensor the
interpretation of the metric tensor should be fundamentally changed. For this reason, the interpretation
of an asymmetric strain tensor requires mathematical foundations other than the Riemann geometry,
such as changing the definition of a scalar product, or defining an angle between two lines different from
the scalar product. (Knowing the structure of geometry and differential geometry makes it difficult to
imagine a different mathematical construction for these mathematical objects.)

Due to the interpretation of the tensors of small strains, it is non-linear: the strain tensor was not
derived from the gradient tensor of the displacement, but from the measure tensor of the strain
interpreted as the difference of the metric tensor in the deformed and undeformed state. However, this
is by definition a quadratic function of the gradient tensor Vu of the displacement vector u. Based on
the above, the linearization of nonlinear relationships of the tensor of small strains is not related to the
magnitude of the strain but to something else [3,4,5].

6. Summary
In this study we provided an overview of applying metric tools and their limitations.

By metric tools we mean the scalar product, the interpretation and measurement of distance and
angle.

The conditions for applying metric tools are the following:

— we model the media to be examined as a domain of a topological space,

— asymmetric quadratic form, the metric tensor is given in the topological space,

— the length and angle enclosed by the two curves are given by a scalar product,

— relative strains are negligible to compare with 1 (one),

— the applied coordinate system is orthogonal at least almost orthogonal.

The consequences of applying metric tools are the following.

— In the classic continuum independent rotational degree of freedom cannot be interpreted:

o the rotation of a point cannot be interpreted,

o rotation can only be interpreted of a direction, or in a rigid body-like neighborhood of a point
(three points, or a triple),

o the displacement in the classic continuum clearly determines the rotation of any base vector
as a direction, and the rotation of the neighborhood of every point,

o as aresult of it, an angle change which is independent of the displacement in any sense cannot
be interpreted,

o since the metric tensor is symmetric (the elements of the scalar product are interchangeable),
therefore, an asymmetric strain tensor, and, consequently, a rotation field independent of the
derivative of the displacement vector cannot be interpreted.

— In the classic continuum



o interpretable a strain tensor with mechanical content the main diagonal elements describe the
relative elongation and the side diagonal elements describe the relative angular change,

o the strain tensor interpreted describes small strains,

o the strain tensor describing large strains cannot be interpreted.

— Tensor of small strains

o is half of the difference of the metric tensor of the deformed G and undeformed g state; and
o is expressed, because of its interpretation, by the quadratic function of the gradient tensor of

the displacement vector u: &€ =(Vu+ (Vu)" + (Vu)(Vu)’)/ 2,
o is symmetrical, and

o linearization is independent of the magnitude of strain, more precisely, of that fact that the
strains are small.

— The following conclusions can be regarding the rotations:

o the rotation of a direction vector is given by the VR gradient tensor of position vector R,

o the rotation of the neighborhood of a point is given by the orthogonal tensor Q getting from
the polar decomposition of the gradient tensor VR of position vector R in the deformed state,

o the rotation of the neighborhood of a point is described in the first, linear approach by the

tensor Q, =g+,
o the tensor @, =((Vu)" —Vu)/2 does not describe the rotation, but instead interprets a vector
product.

The tensor of small strains is consistent with the atomic-molecular structure and continuous mapping.
The fact that a tensor of large strains cannot be created does not contradict the experience, since the
significant change of shape is not a strain but a rearrangement.
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